Antiprotozoal activity of (E)-cinnamic N-acylhydrazone derivatives.

نویسندگان

  • Samir Aquino Carvalho
  • Marcel Kaiser
  • Reto Brun
  • Edson Ferreira da Silva
  • Carlos Alberto Manssour Fraga
چکیده

A series of 14 (E)-cinnamic N-acylhydrazone derivatives, designed through molecular hybridization between the (E)-1-(benzo[d][1,3]dioxol-5-yl)-3-(4-bromophenyl)prop-2-en-1-one and (E)-3-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)-7-methoxy-2-naphthohydrazide, were tested for in vitro antiparasitic activity upon axenic amastigote forms of Leishmania donovani and bloodstream forms of Trypamosoma brucei rhodesiense. The derivative (2E)-3-(4-hydroxy-3-methoxy-5-nitrophenyl)-N'-[(1E)-phenylmethylene]acrylohydrazide showed moderate antileishmanial activity (IC50 = 6.27 µM) when compared to miltefosine, the reference drug (IC50 = 0.348 µM). However, the elected compound showed an excellent selectivity index; in one case it was not cytotoxic against mammalian L-6 cells. The most active antitrypanosomal compound, the derivative (E)-N'-(3,4-dihydroxybenzylidene)cinnamohydrazide (IC50 = 1.93 µM), was cytotoxic against mammalian L-6 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indazole N-oxide derivatives as antiprotozoal agents: synthesis, biological evaluation and mechanism of action studies.

A series of indazole N-oxide derivatives have been synthesized and their antichagasic and leishmanocidal properties studied. 3-Cyano-2-(4-iodophenyl)-2H-indazole N1-oxide exhibited interesting antichagasic activity on the two parasitic strains and the two parasitic stages evaluated. Furthermore, besides its trypanocidal activity, 3-cyano-2-(4-nitrophenyl)-2H-indazole N1-oxide showed leishmanoci...

متن کامل

Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid an...

متن کامل

Synthesis and antibacterial evaluation of New N-acylhydrazone derivatives from dehydroabietic acid.

A series of new N-acylhydrazone derivatives were synthesized in good yields through the reactions of dehydroabietic acid hydrazide with a variety of substituted arylaldehydes. The structures of the synthesized compounds were confirmed by IR, 1H- and 13C-NMR, ESI-MS, elemental analysis and single crystal X-ray diffraction. From the crystal structure of compound 4l, the C=N double bonds of these ...

متن کامل

Synthesis, antiprotozoal and antibacterial activity of nitro- and halogeno-substituted benzimidazole derivatives.

Two series of benzimidazole derivatives were sythesised. The first one was based on 5,6-dinitrobenzimidazole, the second one comprises 2-thioalkyl- and thioaryl-substituted modified benzimidazoles. Antibacterial and antiprotozoal activity of the newly obtained compounds was studied. Some thioalkyl derivatives showed remarkable activity against nosocomial strains of Stenotrophomonas malthophilia...

متن کامل

Trans-3-phenyl-2-propenoic acid (cinnamic acid) derivatives: structure-activity relationship as hepatoprotective agents.

Among various phenolic compounds, caffeic acid (3,4-dihydroxycinnamic acid) exhibited pharmacological antioxidant, anticancer and antimutagenic activities. The antioxidant properties of phenolic compounds depend on their chemical structure, however, the role of the ethylenic side chain in the radical scavenging activity remains controversial. Thus, the aim of this study consisted to test cinnam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 2014